Домой / Технологии / Важнейший обязательный органоид животной клетки. Органоиды

Важнейший обязательный органоид животной клетки. Органоиды

Органоиды – это постоянные, обязательно присутствующие структуры клетки, выполняющие специфические функции и имеющие определенное строение.

Органоиды (синоним: органеллы) - это органы клетки, маленькие органы. По строению органоиды можно разделить на две группы: мембранные , в состав которых обязательно входят мембраны, и немембранные . В свою очередь, мембранные органоиды могут быть одномембранными – если образованы одной мембраной и двумембранными – если оболочка органоидов двойная и состоит из двух мембран.

Включения - это непостоянные структуры клетки, которые появляются в ней и исчезают в процессе метаболизма. Различают трофические, секреторные, экскреторные и пигментные включения.

Следует различать органоиды и включения.

Видео: Обзор клеточных структур


Органоиды (органеллы)

Видео: Протеасомы.

Фагосомы

Микрофиламенты . Каждый микрофиламент - это двойная спираль из глобулярных молекул белка актина. Поэтому содержание актина даже в немышечных клетках достигает 10 % от всех белков.
В узлах сети микрофиламентов и в местах их прикрепления к клеточным структурам находятся белок a-актинин, а также, белки миозин и тропомиозин.
Микрофиламенты образуют в клетках более или менее густую сеть. Так, например, в микрофаге насчитывается около 100.000 микрофиламентов. Функции микрофиламентов:
- миграция клеток в эмбриогенезе,
- передвижение макрофагов,
- фаго- и пиноцитоз,
- рост аксонов (у нейронов),
- образование каркаса для микроворсинок и обеспечение всасывания в кишечнике и реабсорбции в почечных канальцах.

Промежуточные филаменты . Являются компонентом цитоскелета. Они толще микрофиламентов и имеют тканеспецифическую природу:
- в эпителии они образованы белком кератином,
- в клетках соединительной ткани - виментином,
- в гладких мышечных клетках - десмином,
- в нервных клетках они называются нейрофиламентами и тоже образованы особым белком.
Промежуточные филаменты часто располагаются параллельно поверхности клеточного ядра.

Микротрубочки . Микротрубочки образуют в клетке густую сеть. Она начинается от перинуклеарной области (от центриоли) и радиально распространяется к плазмолемме, следуя за изменениями её формы. Также микротрубочки идут вдоль длинной оси отростков клеток. В клетках с ресничками микротрубочки образуют аксонему (осевую нить) ресничек.
Стенка микротрубочки состоит из одного слоя глобулярных субъединиц белка тубулина.
На поперечном срезе видно 13 таких субъединиц, образующих кольцо.
Его параметры таковы:
- внешний диаметр - dex = 24 нм,
- внутренний диаметр - din = 14 нм,
- толщина стенки - l стенки = 5 нм.
Как и микрофиламенты, микротрубочки образуются путём самосборки. Это происходит при сдвиге равновесия между свободной и связанной формами тубулина в сторону связанной формы.
В неделящейся интерфазной клетке создаваемая микротрубочками сеть играет роль цитоскелета, поддерживающего форму клетки.
Транспорт веществ по длинным отросткам нервных клеток идёт не внутри микротрубочек, а вдоль них по перитубулярному пространству. Но микротрубочки выступают при этом в роли направительных структур: Белки-транслокаторы (динеины и кинезины), перемещаясь по внешней поверхности микротрубочек, "тащат" за собой и мелкие пузырьки с транспортируемыми веществами.
В делящихся клетках сеть микротрубочек перестраивается и формирует веретено деления. Они связывают хроматиды хромосом с центриолями и способствуют правильному расхождению хроматид к полюсам делящейся клетки.

Клеточный центр .

Пластиды .

Вакуоли . Вакуоли – одномембранные органоиды. Они представляют собой мембранные «ёмкости», пузыри, заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Вакуоли характерны для растительных клеток. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы). Из органических веществ чаще запасаются сахара и белки. Сахара – чаще в виде растворов, белки поступают в виде пузырьков ЭПР и аппарата Гольджи, после чего вакуоли обезвоживаются, превращаясь в алейроновые зерна. В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.
Функции вакуолей. Растительные вакуоли отвечают за накопление воды и поддержание тургорного давления, накопление водорастворимых метаболитов – запасных питательных веществ и минеральных солей, окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян. Пищеварительные и автофагические вакуоли – разрушают органические макромолекулы; сократительные вакуоли регулируют осмотическое давление клетки и выводят ненужные вещества из клетки.
Эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга.

Включения

Включения . Включения - это непостоянные структуры клетки, которые появляются в ней и исчезают в процессе метаболизма. Различают трофические, секреторные, экскреторные и пигментные включения.
Группа трофических включений объединяет углеводные, липидные и белковые включения. Наиболее распространенным представителем углеводных включений является гликоген - полимер глюкозы. На светооптическом уровне наблюдать включения гликогена можно при использовании гистохимической ШИК-реакции. В электронном микроскопе гликоген выявляется как осмиофильные гранулы, которые в клетках, где гликогена много (гепатоцитах), сливаются в крупные конгломераты - глыбки.
Липидными включениями наиболее богаты клетки жировой ткани - липоциты, резервирующие запасы жира для нужд всего организма, а также стероидпродуцирующие эндокринные клетки, использующие липид холестерин для синтеза своих гормонов. На ультрамикроскопическом уровне липидные включения имеют правильную округлую форму и в зависимости от химического состава характеризуются высокой, средней или низкой электронной плотностью.
Белковые включения, например, вителлин в яйцеклетках, накапливается в цитоплазме в виде гранул. Секреторные включения представляют собой разнообразную группу.
Секреторные включения синтезируются в клетках и выделяются (секретируются) в просветы протоков (клетки экзокринных желез), в межклеточную среду (гормоны, нейромедиаторы, факторы роста и др.), кровь, лимфу, межклеточные пространства (гормоны). На ультрамикроскопическом уровне секреторные включения имеют вид мембранных пузырьков, содержащих вещества разной плотности и интенсивности окраски, что зависит от их химического состава.
Экскреторные включения - это, как правило, продукты метаболизма клетки, от которых она должна освободиться. К экскреторным включениям относятся также инородные включения - случайно, либо преднамеренно (при фагоцитозе бактерий, например,) попавшие в клетку субстраты. Такие включения клетка лизирует с помощью своей лизосомальной системы, а оставшиеся частицы выводит (экскретирует) во внешнюю среду. В более редких случаях попавшие в клетку агенты остаются неизменными и могут не подвергнуться экскреции - такие включения более правильно именовать чужеродными (хотя чужеродными для клетки являются и включения, которые она лизирует).
Пигментные включения хорошо выявляются как на светооптическом, так и на ультрамикроскопическом уровнях. Очень характерный вид они имеют на электронных микрофотографиях - в виде осмиофильных структур разных размеров и формы. Данная группа включений характерна для пигментоцитов. Пигментоциты, присутствуя в дерме кожи, защищают организм от глубокого проникновения опасного для него ультрафиолетового излучения, в радужке, сосудистой оболочке и сетчатке глаза пигментоциты регулируют поток света на фоторецепторные элементы глаза и предохраняют их от перераздражения светом. В процессе старения очень многие соматические клетки накапливают пигмент липофусцин, по присутствию которого можно судить о возрасте клетки. В эритроцитах и симпластах скелетных мышечных волокон присутствуют соответственно гемоглобин или миоглобин - пигменты-переносчики кислорода и углекислоты.

Органоиды - постоянно присутствующие в цитоплазме, специализированные для выполнения определенных функций структуры. По принципу организации выделяют мембранные и немембранные органоиды клетки.

Мембранные органоиды клетки

1. Эндоплазматическая сеть (ЭПС) - система внутренних мембран цитоплазмы, образующих крупные полости - цистерны и многочисленные канальцы; занимает центральное положение в клетке, вокруг ядра. ЭПС составляет до 50% объема цитоплазмы. Каналы ЭПС связывают все органоиды цитоплазмы и открываются в перинуклеарное пространство ядерной оболочки. Таким образом, ЭПС представляет собой внутриклеточную циркуляционную систему. Различают два вида мембран эндоплазматической сети - гладкую и шероховатую (гранулярную). Однако необходимо понимать, что они являются частью одной непрерывной эндоплазматической сети. На гранулярных мембранах расположены рибосомы, здесь идет синтез белка. На гладких мембранах упорядоченно расположены ферментные системы, участвующие в синтезе жиров и углеводов.

2. Аппарат Гольджи представляет собой систему цистерн, канальцев и пузырьков, образованных гладкими мембранами. Эта структура расположена на периферии клетки по отношению к ЭПС. На мембранах аппарата Гольджи упорядоченно расположены ферментные системы, участвующие в образовании более сложных органических соединений из белков, жиров и углеводов, синтезированных в ЭПС. Здесь происходит сборка мембран, образование лизосом. Мембраны аппарата Гольджи обеспечивают накопление, концентрацию и упаковку секрета, выделяемого из клетки.

3. Лизосомы - мембранные органоиды, содержащие до 40 протеолитических ферментов, способных расщеплять органические молекулы. Лизосомы участвуют в процессах внутриклеточного пищеварения и апоптоза (запрограммированной гибели клетки).

4. Митохондрии - энергетические станции клетки. Двухмембранные органоиды, имеющие гладкую наружную и внутреннюю мембрану, образующую кристы - гребни. На внутренней поверхности внутренней мембраны упорядоченно расположены ферментные системы, участвующие в синтезе АТФ. В митохондриях находится кольцевая молекула ДНК, сходная по строению с хромосомой прокариот. Имеется много мелких рибосом, на которых идет частично независимый от ядра синтез белков. Однако генов, заключенных в кольцевидной молекуле ДНК, недостаточно для обеспечения всех аспектов жизнедеятельности митохондрий, и они являются полуавтономными структурами цитоплазмы. Увеличение их числа происходит за счет деления, чему предшествует удвоение кольцевой молекулы ДНК.

5. Пластиды, - органоиды, характерные для растительных клеток. Существуют лейкопласты - бесцветные пластиды, хромопласты, имеющие красно-оранжевую окраску, и хлоропласты. - зеленые пластиды. Все они обладают единым планом строения и образованы двумя мембранами: наружной (гладкой) и внутренней, образующей перегородки - тилакоиды стромы. На тилакоидах стромы расположены граны, состоящие из уплощенных мембранных пузырьков - тилакоидов граны, уложенных один на другой по типу монетных столбиков. Внутри тилакоидов граны находится хлорофилл. Световая фаза фотосинтеза проходит именно здесь - в гранах, а реакции темновой фазы - в строме. В пластидах имеется кольцевидная молекула ДНК, сходная по строению с хромосомой прокариот, и много мелких рибосом, на которых идет частично независимый от ядра синтез белков. Пластиды могут переходить из одного вида в другой (хлоропласты в хромопласты и лейкопласты), они являются полуавтономными органоидами клетки. Увеличение числа пластид идет за счет их деления надвое и почкования, которым предшествует редупликация кольцевой молекулы ДНК.

Немембранные органоиды клетки

1. Рибосомы - округлые образования из двух субъединиц, состоящие на 50% из РНК и 50% из белков. Субъединицы образуются в ядре, в ядрышке, а в цитоплазме в присутствии ионов Са 2+ объединяются в целостные структуры. В цитоплазме рибосомы расположены на мембранах эндоплазматической сети (гранулярная ЭПС) или свободно. В активном центре рибосом происходит процесс трансляции (подбор антикодонов тРНК к кодонам иРНК). Рибосомы, перемещаясь по молекуле иРНК с одного конца на другой, последовательно делают доступными кодоны иРНК для контакта с антикодонами тРНК.

2. Центриоли (клеточный центр) представляют собой цилиндрические тельца, стенкой которых являются 9 триад белковых микротрубочек. В клеточном центре центриоли расположены под прямым углом друг к другу. Они способны к самовоспроизведению по принципу самосборки. Самосборка - образование при помощи ферментов структур, подобных существующим. Центриоли принимают участие в образовании нитей веретена деления. Обеспечивают процесс расхождения хромосом во время деления клеток.

3. Жгутики и реснички - органоиды движения; они имеют единый план строения - наружная часть жгутика обращена в окружающую среду и покрыта участком цитоплазматической мембраны. Они представляют собой цилиндр: его стенкой являются 9 пар белковых микротрубочек, а в центре расположены две осевые микротрубочки. В основании жгутика, расположенного в эктоплазме - цитоплазме, лежащей непосредственно под клеточной мембраной, к каждой паре микротрубочек добавляется еще одна короткая микротрубочка. В результате образуется базальное тельце, состоящее из девяти триад микротрубочек.

4. Цитоскелет представлен системой белковых волокон и микротрубочек. Обеспечивает поддержание и изменение формы тела клетки, образование псевдоподий. Отвечает за амебоидное движение, образует внутренний каркас клетки, обеспечивает передвижение клеточных структур по цитоплазме.

Органеллы, они же органоиды являются основой правильного развития клетки. Они представляют собой постоянные, то есть никуда не исчезающие структуры, которые имеют определенное строение, от которого напрямую зависят выполняемые ими функции. Различают органоиды следующих типов: двумембранные и одномембранные. Строение и функции органоидов клетки заслуживают особого внимания для теоретического и по возможности практического изучения, так как эти структуры, несмотря на свои маленькие, не различимые без микроскопа размеры, обеспечивают поддержание жизнеспособности всех без исключения органов и организма в целом.

Двумембранные органоиды - это пластиды, клеточное ядро и митохондрии. Одномембранные — органеллы вакуолярной системы, а именно: эпс, лизосомы, комплекс (аппарат) Гольджи, различные вакуоли. Существуют также и немембранные органоиды – это клеточный центр и рибосомы. Общее свойство мембранных видов органелл - они образовались из биологических мембран. Растительная клетка отличается по строению от животной, чему не в последнюю очередь способствуют процессы фотосинтеза. Схему фотосинтетических процессов можно прочитать в соответствующей статье. Строение и функции органоидов клетки указывают на то, что для обеспечения их бесперебойной работы нужно, чтобы каждый из них в отдельности работал бес сбоев.

Клеточная стенка или матрикс состоит из целлюлозы и ее родственной структуры — гемицеллюлозы, а также пектинов. Функции стенки - защита от негативного влияния извне, опорная, транспортная (перенос из одной части структурной единицы в другую питательных веществ и воды), буферная.

Ядро образовано двойной мембраной с углублениями — порами, нуклеоплазмой, содержащей в своем составе хроматин, ядрышками, в которых хранится наследственная информация.

Вакуоль - это ни что иное, как слияние участков ЭПС, окруженной специфической мембраной, называемой тонопластом который регулирует процесс, называемый выделение и обратный ему — поступление необходимых веществ.

ЭПР представляет собой каналы, образованные мембранами, двух типов — гладкими и шероховатыми. Функции, которые выполняет эпр – синтез и транспортная.

Рибосомы – выполняют функцию синтезирования белка.

К основным органоидам относят: митохондрии, пластиды, сферосомы, цитосомы, лизосомы, пероксисомы, АГи транслосомы.

Таблица. Органоиды клетки и их функции

В этой таблице рассматриваются все имеющиеся органоиды клетки, как растительной, как и животной.

Органоид (Органелла) Строение Функции
Цитоплазма Внутренняя полужидкая субстанция, основа клеточной среды, образована мелкозернистой структурой. Содержит ядро и набор органоидов. Взаимодействие между ядром и органоидами. Транспорт веществ.
Ядро Шаровидной или овальной формы. Образовано ядерной оболочкой, состоящей из двух мембран, имеющих поры. Имеется полужидкая основа, называемая кариоплазма или клеточный сок.Хроматин или нити ДНК, образуют плотные структуры, называемые хромосомами.

Ядрышки – мельчайшие, округлые тельца ядра.

Регулирует все процессы биосинтеза, такие как обмена веществ и энергии, осуществляет передачу наследственной информации.Кариоплазма ограничивает ядро от цитоплазмы, кроме того, дает возможность осуществлять обмен между непосредственно ядром и цитоплазмой.

В ДНК заключена наследственная информация клетки, поэтому ядро – хранитель всей информации об организме.

В ядрышках синтезируются РНК и белки, из которых образуются в последствие рибосомы.

Клеточная мембрана Образована мембрана двойным слоем липидов, а также белком. У растений снаружи покрыта дополнительно слоем клетчатки. Защитная, обеспечивает форму клеток и клеточную связь, пропускает внутрь клетки необходимые вещества и выводит продукты обмена. Осуществляет процессы фагоцитоза и пиноцитоза.
ЭПС (гладкая и шероховатая) Образована эндоплазматическая сеть системой каналов в цитоплазме. В свою очередь, гладкая эпс образована, соответственно, гладкими мембранами, а шероховатая ЭПС – мембранами, покрытыми рибосомами. Осуществляет синтез белков и некоторых других органических веществ, а также является главной транспортной системой клетки.
Рибосомы Отростки шероховатой мембраны эпс шарообразной формы. Главная функция – синтез белков.
Лизосомы Пузырек, окруженный мембраной. Пищеварение в клетке
Митохондрии Покрыты наружной и внутренней мембранами. Внутренняя мембрана имеет многочисленные складки и выступы, называемые кристами Синтезирует молекулы АТФ. Обеспечивает клетку энергией.
Пластиды Тельца, окруженные двойной мембраной. Различают бесцветные (лейкопласты) зеленые (хлоропласты) и красные, оранжевые, желтые (хромопласты) Лейкопласты — накапливают крахмал.Хлоропласты — участие в процессе фотосинтеза.

Хромопласты — Накапливание каратиноидов.

Клеточный Центр Состоит из центриолей и микротрубочек Участвует в формировании цитоскелета. Участие в процессе деления клетки.
Органоиды движения Реснички, жгутики Осуществляют различные виды движения
Комплекс (аппарат) Гольджи Состоит из полостей, от которых отделяются пузырьки разных размеров Накапливает вещества, которые синтезируются собственно клеткой. Использование этих веществ или вывод во внешнюю среду.

Строение ядра — видео

Каждый органоид осуществляет определённые функции, жизненно необходимые для клетки. Таким образом, любое проявление жизнедеятельности клетки - следствие согласованной работы её взаимосвязанных компонентов, особенно органоидов. К органоидам относят митохондрии, аппарат Гольджи, клеточный центр, эндоплазматическую сеть, рибосомы, цитоплазматические микротрубочки и др., а в растительных клетках, кроме того, - пластиды, сферосомы и др. Вопрос о лизосомах как органоидах дискуссионен. Термин «Органоиды» объясняется сопоставлением этих компонентов клетки с органами многоклеточного организма. Органоиды противопоставляют временным включениям клетки, которые появляются и исчезают в процессе обмена веществ.

Иногда органоидами считают только постоянные структуры клетки, расположенные в ее цитоплазме . В то же время нередко к органоидам причисляют и внутриядерные структуры - например, ядрышко.


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Органоид" в других словарях:

    Органоид … Орфографический словарь-справочник

    - (органелла), часть КЛЕТКИ, например, МИТОХОНДРИЯ или ХРОМОСОМА, с постоянной структурой и специфической функцией. Органоид является для клетки тем же, чем орган для организма … Научно-технический энциклопедический словарь

    Хромопласт, пластида, хондриосома, органелла Словарь русских синонимов. органоид сущ., кол во синонимов: 5 акросома (2) … Словарь синонимов

    ОРГАНОИД, органоида, муж. (от греч. organon Орган и eidos вид) (биол.). Орган у простейших организмов и клеток. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    Органоида, м. [от греч. organon – орган и eidos – вид] (биол.). части клеток одноклеточных организмов, выполняющие определённые функции и поэтому аналогичные органам многоклеточных организмов. Большой словарь иностранных слов. Издательство «ИДДК» … Словарь иностранных слов русского языка

    Organelle, cell organ органелла, органоид. Постоянная внутриклеточная структура (клеточный “орган”), обеспечивающая выполнение специфических функций; у эукариот известно более 10 различных О.; в некоторых специализированных клетках образуются… … Молекулярная биология и генетика. Толковый словарь.

    органоид - organoidas statusas T sritis augalininkystė apibrėžtis Pastovus ląstelės darinys, atliekantis tam tikrą gyvybinę funkciją. atitikmenys: angl. organelle rus. органелла; органоид … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

    - (органе + греч. eides подобный; син. органелла) постоянная цитоплазматическая структура животной или растительной клетки, выполняющая определенную функцию (напр., митохондрия, рибосома, клеточный центр) … Большой медицинский словарь

    М. см. органоиды Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

    Органоид, органоиды, органоида, органоидов, органоиду, органоидам, органоид, органоиды, органоидом, органоидами, органоиде, органоидах (

Постоянные клеточные структуры, клеточные органы, обеспечивающие выполне­ние специфических функций в процессе жизнедеятельнос­ти клетки - хранение и передачу генетической информации, перенос веществ, синтез и превращения ве­ществ и энергии, деление, движение и др.

К органоидам (органеллам) клеток эукариот относятся:

  • хромосомы;
  • клеточная мембрана;
  • митохондрии;
  • комплекс Гольджи;
  • эндоплазматическая сеть;
  • рибосомы;
  • микротрубочки;
  • микрофиламенты;
  • лизосомы.

В животных клетках присутствуют также центриоли, микрофибриллы, а в растительных - свойственные только им пластиды.

Иногда к органоидам клеток эукариот отно­сят и ядро в целом.

Прокариоты лишены большинства органоидов, у них имеются лишь клеточная мембрана и рибосомы, отличающиеся от цитоплазматических рибосом клеток эукариот.

В специализированных эукариотных клетках могут быть сложные структуры, в основе которых находятся универсальные органоиды, например микротру­бочки и центриоли - главные компоненты жгутиков и ресничек. Микрофибриллы лежат в основе тоно- и нейрофибрилл. Специальные структуры одноклеточных, напри­мер жгутики и реснички (построены так же, как у клеток многоклеточных), выполняют функцию органов движения.

Чаще в современной литературе термины «органоиды » и «органеллы » употребляют как синонимы.

Структуры, общие для животных и растительных клеток

Схематическое изображение

Структура

Функции

Плазматическая мембрана (плазмалемма, клеточная мембрана)

Два слоя липида (бислой) между двумя слоями белка

Избирательно прони­цаемый барьер, регули­рующий обмен между клеткой и средой

Ядро

Самая крупная органелла, заключенная в оболочку из двух мембран, пронизанную ядерными порами . Со­держит хроматин - в такой форме раскру­ченные хромосомы на­ходятся в интерфазе. Содержит также струк­туру, называемую яд­рышком

Хромосомы содержат ДНК - вещество нас­ледственности.ДНК состоит из генов, регу­лирующих все виды клеточной активности. Деление ядра лежит в основе размножения клеток, а следователь­но, и процесса воспро­изведения. В ядрышке образуются рибосомы

Эндоплазматический ретикулум (ЭР)

Система уплощенных мембранных мешоч­ков - цистерн - в виде трубочек и пластинок. Образует единое целое с наружной мембраной ядерной оболочки

Если поверхность ЭР покрыта рибосомами, то он называется шеро­ховатым .По цистер­нам такого ЭР транс­портируетсябелок, синтезированный на рибосомах. Гладкий ЭР (без рибосом) служит местом синтеза липидов и стероидов

Рибосомы

Очень мелкие органеллы, состоящие из двух субчастиц - большой и малой. Содержат белок и РНК приблизительно в равных долях. Рибо­сомы, обнаруживаемые в митохондриях (а так­же в хлоропластах - у растений), еще мельче

Место синтеза белка, где удерживаются в правильном положе­нии различные взаимо­действующие молеку­лы. Рибосомы связаны с ЭР или свободно ле­жатвцитоплазме. Много рибосом могут образоватьполисому (полирибосому ), в кото­рой они нанизаны на единую нить матрич­ной РНК

Митохондрии

Митохондрия окруже­на оболочкой из двух мембран, внутренняя мембрана образует складки (кристы ). Со­держит матрикс, в ко­тором находятся не­большое количество рибосом, одна кольце­вая молекула ДНК и фосфатные гранулы

При аэробном дыхании в кристах происходит окислительное фосфорилирование и перенос электронов, а в матрик­се работают ферменты, участвующие в цикле Кребса и в окислении жирных кислот

Аппарат Гольджи

Стопка уплощенных мембранных мешочков - цистерн . На одном конце стопки мешочка непрерывно образуются, а с другого - отшнуровываются в виде пузырь­ков. Стопки могут существовать в виде дискретных диктиосом, как в рас­тительных клетках, или образовывать прост­ранственную сеть, как во многих животных клетках

Многие клеточные ма­териалы, например ферменты из ЭР, пре­терпевают модифика­цию в цистернах и транспортируются в пузырьках. Аппарат Гольджи участвует в процессе секреции, и в нем образуются лизо­сомы

Лизосомы

Простой сферический мембранный мешочек (мембрана одинарная), заполненный пищева­рительными (гидроли­тическими) фермента­ми. Содержимое ка­жется гомогенным

Выполняют много функций, всегда свя­занных с распадом ка­ких-либо структур или молекул

Микротельца

Органелла не совсем правильной сферичес­кой формы, окружен­ная одинарной мембра­ной. Содержимое име­ет зернистую структу­ру, но иногда в нем по­падается кристаллоид, или скопление нитей

Все микротельца со­держат каталазу - фермент, катализирую­щий расщепление пероксида водорода. Все они связаны с окисли­тельными реакциями

Клеточная стенка, срединная пластинка, плазмодесмы

клеточная стенка

Жесткая клеточная стенка, окружающая клетку, состоит из целлюлозных микро­фибрилл, погруженных в матрикс, в состав ко­торого входят другие сложные полисахари­ды, а именно гемицеллюлозы и пектиновые вещества. У некоторых клеток клеточные стен­ки претерпевают вто­ричное утолщение

Обеспечивает механи­ческую опору и защиту. Благодаря ей возникает тургорное давление, способствующее усиле­нию опорной функции. Предотвращает осмо­тический разрыв клет­ки. По клеточной стен­ке происходит пере­движение воды и мине­ральных солей. Различ­ные модификации, на­пример пропитывание лигнином, обеспечива­ютвыполнение специализированных функций

средняя пластинка

Тонкий слой пектино­вых веществ (пектатов кальция и магния)

Скрепляет друг с дру­гом соединение клетки

плазмодесма

Тонкая цитоплазматическая нить, связываю­щая цитоплазму двух соседних клеток через тонкую пору в клеточ­ной стенке. Пора вы­стлана плазматической мембраной Сквозь по­ру проходит десмотубула, часто соединенная на обоих концах с ЭР

Объединяют протопласты соседних кле­ток в единую непре­рывную систему - симпласт , по которой про­исходит транспорти­ровка веществ между этими клетками

Хлоропласт

Крупная, содержащая хлорофилл пластида, в которой протекает фо­тосинтез. Хлоропласт окружен оболочкой из двойной мембраны и заполнен студенистой стромой . В строме на­ходится система мемб­ран, собранных в стоп­ки , или граны. В ней же может отлагаться крах­мал. Кроме того, строма содержит рибосомы, кольцевую молекулу ДНК и капельки масла

В этой органелле про­исходит фотосинтез, то есть синтез сахаров и других веществ из СО 2 и воды за счет световой энергии, улавливаемой хлорофиллом.Свето­вая энергия превраща­ется в химическую

Крупная центральная вакуоль

Мешок, образованный одинарной мембраной, которая называется тонопластом . В вакуоли содержится клеточный сок - концентриро­ванный раствор раз­личных веществ, таких, как минеральные соли, сахара, пигменты, ор­ганические кислоты и ферменты. В зрелых клетках вакуоли обыч­но бывают большими

Здесь хранятся различ­ные вещества, в том числе и конечные про­дукты обмена. От со­держимого вакуоли в сильной степени зави­сят осмотические свойства клетки. Иног­да вакуоль выполняет функции лизосом

Сравнительная характеристика РНК и ДНК

Признаки

РНК

ДНК

Местонахождение в клетке

Ядро, рибосомы, цито­плазма, митохондрии, хлоропласты

Ядро, митохондрии, хло­ропласты

Местонахождение в ядре

Ядрышко

Хромосомы

Строение макро­молекулы

Одинарная полинуклеотидная цепочка

Двойной неразветвленный линейный полимер, свернутый правозакрученной спиралью

Мономеры

Рибонуклеотиды

Дезоксирибонуклеотиды

Состав нуклеотида

Азотистое основание (пуриновое - аденин, гуа­нин, пиримидиновое - урацил, цитозин); рибоза (углевод): остаток фос­форной кислоты

Азотистое основание (пуриновое - аденин, гуа­нин, пиримидиновое - тимин, цитозин); дезоксирибоза (углевод): остаток фосфорной кис­лоты

Типы нуклеотидов

Алениловый (А), гуаниловый (Г), уридиловый (У), цитидиловый (Ц)

Алениловый (А), гуаниловый (Г), тимидиловый (Т), цитидиловый (Ц)

Свойства

Не способна к самоудвое­нию. Лабильна

Способна к самоудвое­нию по принципу комплементарности (реду­пликации): А-Т, Т-А, Г-Ц, Ц-Г Стабильна

Функции

Информационная (иРНК) - передает код наследственной инфор­мации о первичной струк­туре белковой молекулы; рибосомальная (рРНК) - входит в состав рибосом; транспортная (тРНК) - переносит аминокислоты к рибосомам; митохондриальная и пластидная РНК - входят в состав рибосом этих органелл

Химическая основа хро­мосомного генетического материала (гена); синтез ДНК, синтез РНК, ин­формация о структуре белков